3.4.50 \(\int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\) [350]

3.4.50.1 Optimal result
3.4.50.2 Mathematica [A] (warning: unable to verify)
3.4.50.3 Rubi [A] (verified)
3.4.50.4 Maple [B] (verified)
3.4.50.5 Fricas [F]
3.4.50.6 Sympy [F]
3.4.50.7 Maxima [F]
3.4.50.8 Giac [F]
3.4.50.9 Mupad [F(-1)]

3.4.50.1 Optimal result

Integrand size = 33, antiderivative size = 314 \[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (5 a A b-2 a^2 B+9 b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}-\frac {2 (a-b) \sqrt {a+b} (5 A b-2 a B-9 b B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^2 d}+\frac {2 (5 A b-2 a B) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b d}+\frac {2 B (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d} \]

output
-2/15*(a-b)*(5*A*a*b-2*B*a^2+9*B*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c) 
)^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+ 
b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d-2/15*(a-b)*(5*A*b-2*B*a-9* 
B*b)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b)) 
^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b 
))^(1/2)/b^2/d+2/5*B*(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/b/d+2/15*(5*A*b-2*B 
*a)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b/d
 
3.4.50.2 Mathematica [A] (warning: unable to verify)

Time = 15.28 (sec) , antiderivative size = 434, normalized size of antiderivative = 1.38 \[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {a+b \sec (c+d x)} \left (2 (a+b) \left (-5 a A b+2 a^2 B-9 b^2 B\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+2 b (a+b) (5 A b-2 a B+9 b B) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+\left (-5 a A b+2 a^2 B-9 b^2 B\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{15 b^2 d (b+a \cos (c+d x)) \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b \sec (c+d x)} \left (\frac {2 \left (5 a A b-2 a^2 B+9 b^2 B\right ) \sin (c+d x)}{15 b^2}+\frac {2 \sec (c+d x) (5 A b \sin (c+d x)+a B \sin (c+d x))}{15 b}+\frac {2}{5} B \sec (c+d x) \tan (c+d x)\right )}{d} \]

input
Integrate[Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]
 
output
(2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*(2*(a + 
b)*(-5*a*A*b + 2*a^2*B - 9*b^2*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sq 
rt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan 
[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(a + b)*(5*A*b - 2*a*B + 9*b*B)*Sqr 
t[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + 
 Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (- 
5*a*A*b + 2*a^2*B - 9*b^2*B)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d* 
x)/2]^2*Tan[(c + d*x)/2]))/(15*b^2*d*(b + a*Cos[c + d*x])*Sqrt[Sec[(c + d* 
x)/2]^2]*Sqrt[Sec[c + d*x]]) + (Sqrt[a + b*Sec[c + d*x]]*((2*(5*a*A*b - 2* 
a^2*B + 9*b^2*B)*Sin[c + d*x])/(15*b^2) + (2*Sec[c + d*x]*(5*A*b*Sin[c + d 
*x] + a*B*Sin[c + d*x]))/(15*b) + (2*B*Sec[c + d*x]*Tan[c + d*x])/5))/d
 
3.4.50.3 Rubi [A] (verified)

Time = 1.18 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 4498, 27, 3042, 4490, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {2 \int \frac {1}{2} \sec (c+d x) \sqrt {a+b \sec (c+d x)} (3 b B+(5 A b-2 a B) \sec (c+d x))dx}{5 b}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (3 b B+(5 A b-2 a B) \sec (c+d x))dx}{5 b}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (3 b B+(5 A b-2 a B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{5 b}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 4490

\(\displaystyle \frac {\frac {2}{3} \int \frac {\sec (c+d x) \left (b (5 A b+7 a B)+\left (-2 B a^2+5 A b a+9 b^2 B\right ) \sec (c+d x)\right )}{2 \sqrt {a+b \sec (c+d x)}}dx+\frac {2 (5 A b-2 a B) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \int \frac {\sec (c+d x) \left (b (5 A b+7 a B)+\left (-2 B a^2+5 A b a+9 b^2 B\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}}dx+\frac {2 (5 A b-2 a B) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (b (5 A b+7 a B)+\left (-2 B a^2+5 A b a+9 b^2 B\right ) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (5 A b-2 a B) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {\frac {1}{3} \left (\left (-2 a^2 B+5 a A b+9 b^2 B\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-(a-b) (-2 a B+5 A b-9 b B) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\right )+\frac {2 (5 A b-2 a B) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\left (-2 a^2 B+5 a A b+9 b^2 B\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) (-2 a B+5 A b-9 b B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 (5 A b-2 a B) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {\frac {1}{3} \left (\left (-2 a^2 B+5 a A b+9 b^2 B\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} (-2 a B+5 A b-9 b B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\right )+\frac {2 (5 A b-2 a B) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {\frac {1}{3} \left (-\frac {2 (a-b) \sqrt {a+b} \left (-2 a^2 B+5 a A b+9 b^2 B\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 (a-b) \sqrt {a+b} (-2 a B+5 A b-9 b B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\right )+\frac {2 (5 A b-2 a B) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 B \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

input
Int[Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]
 
output
(2*B*(a + b*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*b*d) + (((-2*(a - b)*Sqrt 
[a + b]*(5*a*A*b - 2*a^2*B + 9*b^2*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a 
 + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x 
]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*(a - b) 
*Sqrt[a + b]*(5*A*b - 2*a*B - 9*b*B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a 
+ b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x] 
))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d))/3 + (2*(5*A*b 
- 2*a*B)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d))/(5*b)
 

3.4.50.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4490
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(m + 1)   Int[Csc[e + f*x]* 
(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1 
))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a* 
B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 
3.4.50.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3106\) vs. \(2(284)=568\).

Time = 26.64 (sec) , antiderivative size = 3107, normalized size of antiderivative = 9.89

method result size
parts \(\text {Expression too large to display}\) \(3107\)
default \(\text {Expression too large to display}\) \(3136\)

input
int(sec(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
2/3*A/d/b*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(Elliptic 
E(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(co 
s(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)^2+Elli 
pticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c)) 
/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2- 
EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x 
+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c 
)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos 
(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^2*cos(d 
*x+c)^2+2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b 
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2 
*cos(d*x+c)+2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b 
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2) 
*a*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/ 
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*a*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2)) 
*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1 
))^(1/2)*b^2*cos(d*x+c)+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*El 
lipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c) 
+1))^(1/2)*a^2+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Elliptic...
 
3.4.50.5 Fricas [F]

\[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorith 
m="fricas")
 
output
integral((B*sec(d*x + c)^3 + A*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a), x 
)
 
3.4.50.6 Sympy [F]

\[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))**(1/2),x)
 
output
Integral((A + B*sec(c + d*x))*sqrt(a + b*sec(c + d*x))*sec(c + d*x)**2, x)
 
3.4.50.7 Maxima [F]

\[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorith 
m="maxima")
 
output
integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2, x)
 
3.4.50.8 Giac [F]

\[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorith 
m="giac")
 
output
integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2, x)
 
3.4.50.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

input
int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^2,x)
 
output
int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^2, x)